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Tracking unstable periodic orbits in a bronze ribbon experiment
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We demonstrate the tracking of an unstable periodic orbit (UPO) in a bronze ribbon experiment.
The stabilization of the UPO at each tracking step is performed via the local control method, a
variant of the Ott-Grebogi-Yorke [Phys. Rev. Lett. 64, 1196 (1990)] feedback control method.
Starting with feedback control vectors extracted from the analysis of the experimental data at each
tracking step, we redetermine the location of the UPO using an adaptive orbit correction that
exploits the applied control signal and the actual trajectory of the system. Doing so, the unstable
periodic orbit can be tracked into a parameter regime where the chaotic attractor has long ago lost
its stability and another periodic orbit has become stable.

PACS number(s): 05.45.4+b

INTRODUCTION

The control idea of Ott, Grebogi, and Yorke (OGY) to
stabilize unstable periodic orbits (UPOs) embedded in
a chaotic attractor by feedback control [1] has triggered
immense research activity to apply feedback control to
chaotic systems (see [2] and references therein). An im-
mediate and most promising extension of OGY’s control
method is the tracking idea of Schwartz and Triandaf [3].
They propose to first stabilize an UPO lying in a chaotic
attractor and then to slowly alter the control parameter p
while adjusting the control values of the feedback loop to
its new actual values such that control is maintained over
the whole tracking process. The tracking idea in com-
bination with OGY’s control method has direct impact
on the possibility of real world applications of this type
of chaos control. Having a reliable tracking method at
hand, one can deal with fluctuating external parameters,
which improves the stability of OGY’s control for techni-
cal systems, and furthermore it is possible to extend the
range of stability of a system [4]. The feasibility of the
tracking idea has been demonstrated experimentally in
an electronic circuit [5], in a laser experiment [4], and in
the Belousov-Zhabotinsky reaction [6]. A slightly differ-
ent tracking technique, which does not need parameter
adjustment over a whole parameter regime, is reported
in a laser experiment in [7].

While all these experiments [4-6] follow the same
tracking idea, they differ in two aspects: First, in the
variant of OGY’s feedback control method, which is ap-
plied for control (original OGY [5], occasional propor-
tional feedback [8,4], a map based algorithm [6]), and
second, in details of the strategy used to determine the
correct parameters of the feedback loop for each new
tracking step.

To explain the main ingredients of a tracking strategy
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let us briefly recall the fundamental equation of OGY’s
feedback control for a two-dimensional map z,;; =
P(z,,p + 0pn). To stabilize an unstable fixed point
zr(p) = P(zr(p),p) by small parameter perturbations
épn around p, one uses the fact that in the neighborhood
of zp(p) the dynamics can be described by the lineariza-
tion of P around zz(p) and p, i.e.,

0Zpt1 = A(p)dz, + W(p)dp, (1)

with 6z, = z, — ZF(p), d0pn = pn — D, A(p) =
D,P(zr(p),p), and w(p) = %}W. Requiring as a
stability condition that the next state z,; shall fall on
the stable direction of the fixed point the linearization

leads to the feedback condition [1]

épn = K(p) - (2» — 2r(p)) » (2)

which is applied only when the magnitude of dp,, is less
than a maximal allowed parameter perturbation §pmax-
The two-dimensional control vector K(p) [which is cal-
culated using A(p) and w(p)] and the position of the
UPO zp(p) are the parameters of the feedback loop of
the OGY control.

While a small deviation of the control vector K(p) from
its optimal value influences primarily the time one needs
for successful control [9], an error in the determination
of zp(p) results in a systematic deviation of the averaged
control signal (§p,) from zero [3], which is proportional
to the difference between the true fixed point Zr(p) and
the reference fixed point zp(p) used in the feedback loop

(2):
[(5pn)| o [l2r(P) — 2r (P)|- 3)

It is this relation that Schwartz and Triandaf exploit
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in their tracking procedure [3] in order to correct a pre-
diction of Zp(p). At each tracking step they vary the
reference value zg(p) in the feedback loop until the av-
eraged control signal |{(p,)| is minimized.

In the tracking experiment we present in this paper, we
use the adaptive orbit correction recently introduced by
Doerner et al. [10] in order to redetermine the position of
zr(p) at each tracking step. For a one-dimensional map
this approach coincides with the orbit correction used by
Petrov et al. in [6]. The adaptive orbit correction al-
lows one to calculate a new estimate of Zg(p) using an
explicit relation between the control signal, the actual
controlled trajectory, and the true UPO Zg(p). The fea-
sibility of this approach is demonstrated for a vibrating
bronze ribbon. In [11] we reported how to control this
experiment for a specific parameter value with the local
control method of Hiibinger et al. [12], a variant of OGY’s
feedback control. We now report successful tracking of an
UPO from that parameter value into a parameter regime
where the chaotic attractor has long ago lost its stability.

THE BRONZE RIBBON EXPERIMENT

The experimental setup was stimulated by the magne-
toelastic beam experiment of Moon [13]. It is described
in detail in [11], so that we now only briefly sketch some
important features.

The experiment is a horizontally cantilevered elastic
bronze ribbon which is periodically driven (see the ex-
perimental setup in Fig. 1). As a measurement signal
z(t) we use the voltage signal which is related to the de-
flection of the vibrating beam. With this measurement
signal the chaotic attractor is reconstructed in the em-
bedding space (z,#,6), with £ obtained from numerical
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FIG. 1. Experimental setup of the chaotic bronze rib-
bon. A horizontally cantilevered bronze beam equipped
with two small permanent magnets is located in an inho-
mogeneous magnetic field. Two coils are placed around the
free end of the beam and are supplied with an ac voltage
U(t) = UasinZ¥t + p, Uy = 0.6 V, and the driving period
T = 1s. The offset voltage p is used as control parameter.
Measurements are taken with a wire strain gauge at the fixed
end of the beam to obtain a voltage signal z related to the
deflection of the beam.

differentiation of the signal and 6(t) = 2t being the
phase of the periodic driving Uasinf. For the control
parameter p = 0 V we find a chaotic attractor with three
highly unstable period-one orbits (JA,| = 10, A, being
the unstable eigenvalue of the UPO) [11]. This large
instability prevents a successful feedback control if one
uses only one control step per period of the driving, i.e.,
only one Poincaré section. If, however, one increases the
frequency of control, which is done by the local control
method, the experiment can be successfully controlled
[11].

LOCAL CONTROL METHOD

The local control method introduces N equally spaced
Poincaré sections ¥,, n = 1,...,N. For a periodically
driven system (with driving period 7T') this leads to an
adjustment of the control parameter every At = T'/N if
Y., are the natural Poincaré sections of constant phase
0, = %T" of the driving. Thus in our experiment a point
z" in X, is given by z" = (z(t,),Z(ts)), t, mod T =
(n mod N)At. Let z% and z™ be the intersection of the
UPO and the actual trajectory with ¥,, and p™ = p+6ép™
the valid control parameter when the system goes from
Yn to Lpy1. The linearization around z% and p in ¥, of
the flow map qSé: , which maps a state from ¥, to X, 41,
is given by

2" = A" (p)dz" + w™ (p)dp™ (4)

with 6z = 2" — 23(p) € T, A" = D,p 45", and w™ =
At

a‘gi". To stabilize z% the singular value decomposition

of A™ is exploited to obtain the feedback formula

ntS,n
n VaTiz

6pt =(1—p—py (5)

vitwn
with p € (0,1), u? being the largest singular value of
A™ = UW"V™ and v? the corresponding row vector
of V™. For abbreviation we write (5) as

ép" =K"(p) - (2" — 2% (p))- (6)

So the control values for the feedback of the local control
are z%(p) and K™*(p),n=1,...,N.

ORBIT CORRECTION FROM THE CONTROL
SIGNAL

As was already pointed out before, for successful track-
ing it is crucial to reduce a possible difference between
the true unstable orbit 2% and the reference value z’%(p)
of the feedback loop (6). The correction is based on the
following observation [10]. If there is a difference between
the true UPO Z% and the one used in the feedback (6),
then the local control finally leads to an almost periodic
trajectory z” =~ 2"V and an almost periodic control sig-
nal §p"™ ~ §p”tN. As the observed trajectory z” is still
close to the true UPO Z% and the parameter perturba-
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tions dp™ are small, 2™ and §p" fulfill the linearization

(4)

2"t — 23t = A7 (2™ — 2%) + w"p™, n=1,...,N.
(M
For perfect periodicity of §p™ and z™ this set of equations

T

can be solved with respect to z% to obtain a new esti-
mate z% .. of the true orbit z%. In experiments there
is never strict periodicity because of measurement noise.
Therefore one averages ép™ and z" over some, e.g., M,
driving periods and inserts (z") = 4% Ef__;lz"""w and
(6p™) = 3¢ Zinf__gl Sp" N instead of §p™ and z™ into the
set of equations (7). Its solution with respect to 27 gives
a new estimate 2% ., of the true unstable orbit.

In Fig. 2 the effect of this orbit correction in our ex-
periment is shown. With 2% ; we denote the unstable
orbit used as reference orbit z% in the feedback (6). We
then record a sequence of the control signal §p™ and the
stabilized (almost periodic) orbit z" for M = 4 periods
to calculate 2% .., [see Fig. 2 (a)].

In experiments because of measurement noise and pos-
sible errors of A and w” one cannot expect that the

0.6

ZF new a)

0.4 1

0.2 {

0.085 SRS
0.08 7
0.075
007 |
0.065
0.06 1
0.055
0.05 |
0.045

(169"

0 010203040506 07 08 09 1

FIG. 2. (a) In the z-Z plane, 2% .4, used as z3 in the
feedback control, and the corrected orbit Z% ., are shown.
(b) The old value z% .4 is not immediately replaced by
Z% new in the feedback loop. Instead the weighted average
z%(x) = (1 = X)ZFo1a + XZF new is used for the local con-
trol beginning with x = 0 and increasing x after 100 driving
periods by 0.1. Depending on the weighting factor x, the
magnitude of the averaged control signal (|6p™|)» varies. As
optimal x we take the one that minimizes the averaged control
signal, here xopt = 0.7.

corrected orbit 2% ., gives already the correct value of
27%. Therefore in our experiment we do not immediately
replace the old value 2% 3 by 2% .. in (6), but use a
weighted average

zp(x) = (1—x) zTFL‘,old + Xz?’,new7 x €1[0,1], (8)

starting with x = 0 and increasing x slowly. Depending
on the average weighting factor x, the magnitude of the
necessary control signal, i.e., {|6p™|)rn = # Ele |6p™|,
changes. This is shown in Fig. 2(b). In the spirit of
Eq. (3) we take as optimal x the one that minimizes
{|6p™|)» and thus finally obtain a new reference orbit
2% = 2% (Xopt) for the local control. In a tracking process
this optimization of x diminishes also the danger that an
erroneous calculation of Z% .., leads to a loss of control
over the tracked orbit.

The necessary control signal (|6p™|), can be dimin-
ished further by repeating the adaptive orbit correction.
In addition we observed that the reduction of the max-
imal allowed parameter perturbation dpmax often leads
to a decrease of the applied control signal. The orbit
correction which we use in the tracking process therefore
always consists of solving Eq. (7) with the averages (z")
and (dp™) inserted, optimizing the weighting factor x, re-
ducing dpmax and repeating this process until no further
decrease of the control signal can be achieved.

TRACKING THE BRONZE RIBBON

Now that we can systematically improve the estimate
of the true orbit Z} during control we have the crucial
prerequisite at hand for tracking an UPO. Although in
principle it is necessary in a tracking process to adapt be-
sides z7(p) also the control vector K"(p), we neglected
this point in a first attempt to track an UPO of the ex-
perimental bronze ribbon. For the starting parameter
p = 0 V we determined the control values z%(p = 0 V),
A"(p=0V), w*(p=0V), and K*(p = 0 V) using the
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FIG. 3. Bifurcation diagram of the bronze ribbon for the
tracking regime p = 0 V — 0.7 V. Note that for p = 0.7 V the
offset of the voltage exceeds the amplitude U4 = 0.6 V of the
sinusoidal driving (see Fig. 1). In addition, the tracked orbit
is plotted in the diagram. As the size of the tracking steps we
used Ap =0.01 V.
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FIG. 4. Tracked UPO for different parameters p along the
tracking process in the z-z plane. We start to draw the curve
at (z,z) values corresponding to the Poincaré section ¢ = 0.
In (e) we have, for comparison, plotted the coexisting stable
orbit at p = 0.7 V.

method of best recurrent points, linear fits in embedding
space, and the shift of the UPO for a slight change of
the parameter p [11]. After the stabilization of the cor-
responding UPO the tracking process is started, using
as the size of the tracking step Ap = 0.01 V. For each
tracking step the value of z%(p + Ap) is calculated using
repeated orbit correction combined with a reduction of

O0Pmax- Before starting the next tracking step, the result-
ing value of dppax is set to 1.5 8pmax in order not to lose
the UPO in the next tracking step.

We succeed to track the UPO from p =0 V to p = 0.7
V using an averaged control signal of no more than 0.05
V. In Fig. 3 the bifurcation diagram with the tracked
UPO included reveals that we are able to track the UPO
into a parameter regime where the system has switched
to a stable period-one behavior. In Fig. 4 the continuous
change of the tracked UPO can be seen. The final UPO at
p = 0.7V [Fig. 4(e)] differs drastically from the coexisting
stable orbit [Fig. 4(f)].

The successful tracking is a little bit surprising if one
remembers that we did not redetermine the control vec-
tor K"(p) for the feedback and A™(p) and w™(p), which
crucially enter formula (7) for the orbit correction. A
possible reason for the success is that for the UPO con-
sidered in the experiment these quantities do not change
drastically. This has been seen by determining A™ and
w” for different p. But to apply the tracking method
with the adaptive orbit correction of Doerner to general
systems, a redetermination of A™ and w™ during control
should be tried. Omne possible approach could be to fit
A™ and w"™ using the observed dz™ and ép™ of the con-
trolled system together with Eq. (4). Another field of
future work will be the tracking of higher periodic orbits
which we have not attempted yet.

To summarize, we successfully tracked unstable
periodic-one orbits of a mechanical experiment. Start-
ing with feedback control vectors extracted from scalar
measurement data at each tracking step, the new position
of the UPO is redetermined using the adaptive orbit cor-
rection, which exploits during control the control signal
and the actual behavior of the system. As the adaptive
orbit correction reduces the necessary control signal, the
local control itself becomes more robust against external
disturbances. In the tracking process we are able to track
the orbit over a broad parameter regime entering param-
eter regions where the chaotic attractor has disappeared
and another periodic orbit has become stable.
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